PRACTICE PROBLEM SET 26

Calculate the volumes below. The answers are in Chapter 21.

- Find the volume of the solid that results when the region bounded by $y = \sqrt{9-x^2}$ x-axis is revolved around the x-axis and the
- 'n from $x = -\frac{\pi}{1}$ to $x = \frac{\pi}{1}$ is revolved around the x-axis Find the volume of the solid that results when the region bounded by $y = \sec x$ and the x-axis
- ယ is revolved around the y-axis. Find the volume of the solid that results when the region bounded by $x = 1 - y^2$ and the y-axis
- from y = -1 to y = 1 is revolved around the y-axis. Find the volume of the solid that results when the region bounded by $x = \sqrt{5}y^2$ and the y-axis
- *x*-axis is revolved around the line x = 2. Find the volume of the solid that results when the region bounded by $y = x^3$, x = 2, and the
- bounded by y = x, x = 2, and $y = -\frac{x}{2}$ is revolved around the y-axis. Use the method of cylindrical shells to find the volume of the solid that results when the region
- Use the method of cylindrical shells to find the volume of the solid that results when the region bounded by $y = \sqrt{x}$, y = 2x - 1, and x = 0 is revolved around the y-axis.
- bounded by $y = x^2$, y = 4, and x = 0 is revolved around the x-axis. Use the method of cylindrical shells to find the volume of the solid that results when the region
- bounded by $y = 2\sqrt{x}$, x = 4, and y = 0 is revolved around the y-axis. Use the method of cylindrical shells to find the volume of the solid that results when the region
- 10. Use the method of cylindrical shells to find the volume of the solid that results when the region bounded by $y^2 = 8x$ and x = 2 is revolved around the line x = 4.
- 11. Find the volume of the solid whose base is the region between the semi-circle $y = \sqrt{16 - x^2}$ and the x-axis, and whose cross-sections perpendicular to the x-axis are squares with a side on the base.
- 12 Find the volume of the solid whose base is the region between $y = x^2$ and y = 4 and whose perpendicular cross-sections are isosceles right triangles with the hypotenuse on the base.

5 $\frac{3}{2} \left(\frac{3}{2} - \frac{2}{3} \right)^{2}$

North P

DI ONLY? 27 (0/4-x)2 (18x)dc Jacasa La (1/2×)) de

HAMMAN

エー 26h or